Anaerobic Digestion Microbiological perspective

What is anaerobic digestion?

- Microbial degradation of organic waste under anaerobic conditions
- Ubiquitous, naturally-occurring process
- Found in swamps, hydric soils, landfills, rumens

Discovery of methane

- Alessandro Volta discovered methane in 1776 through studying swamp bottoms
- This video demonstrates how the power of methane was first discovered.
 - <u>Volta experiment at Rutgers</u>

How does AD work?

- Consortia of bacteria and microbes work in a serial reaction that leads to production of methane
- Products of one phase are feedstocks for the next
- Overall process only as fast as its slowest step

Anaerobic metabolic processes

- All metabolism requires electron donor (reducer) and acceptors (oxidizer)
- Aerobic organisms use oxygen as e⁻ acceptor (high ATP yield)
- Anaerobic organisms must find alternatives e⁻ acceptors
 - NO³⁻, Fe³⁺, Mn³⁺, SO³⁺, CO₂

Anaerobic metabolic processes

- Anaerobic fermentation
 - Organic material is e⁻ donor
 - Internal cell products are e⁻ acceptors
 - Generates lower yield of ATP
 - Can produce ethanol, butanol, acetone, acetic acid, etc.
 - Performed by bacteria and fungi (i.e. yeast)

Anaerobic metabolic processes

- Anaerobic respiration
 - Uses organic compounds as e⁻ donor (at least in AD)
 - Requires external, alternative e- acceptor (allows electron transport chain to function)
 - Generates reduced compounds (e.g. CH₄)
 - Predominantly performed by bacteria and archaea
- Both fermentation and respiration occur during AD

AD is much more elaborate that people think

Not just a black box...

...but an elegant microbial machine

Hydrolysis

- Large organic compounds are broken down into simpler compounds
- Allows cell to take-in materials
- Performed by many organisms
 - Bacteria (including acidogens), fungi, protists

Vibrio

Hartmanella

Hydrolysis

- Processes uses extracellular enzymes (cellulases, amylases, lipases, proteases)
- Important for both AD and cellulosic ethanol
- Particular interest on cellulosomes
 - Extracellular structures bearing cellulases
 - Allows cell to attach and break cellulose structure

Acetovibrio cellulyticus

Acidogenesis

- Products of hydrolysis are fermented into fatty acid intermediaries
- Performed by acidogens
- Generally fastest step in process
- Unbalanced acidogenesis can cause acidification
- Trace oxygen consumed by facultative bacteria

Lactobacillus

Propionibacterium

Acidogenesis

- Many different fatty acids produced
 - Long-chain fatty acids (LCFAs) (generally produced from lipids)
 - Volatile fatty acids(VFAs) (butyric, propionic, acetic acid), very important in AD

Acetogenesis

- Acetate is very important in AD
- Immediate precursor for majority of methane production
- Some acetate is produced through direct fermentation (mixed acid fermentation)
- Most is through secondary fermentation
 - Converts intermediaries (proprionate, butyrate) to acetate

Syntrophomonas

Acetogenesis

- Two groups of acetogens
 - Obligate hydrogen-producing acetogens (OHPA) – more dominant
 - Homoacetogens less dominant, converts CO₂ and H₂ to acetate through respiration

Acetogenesis (Hydrogen syntropy)

- OHPA produce acetate, CO₂ and H₂ from fatty acids
- Acetate production inhibited at high partial pressure of H₂
- Forms mutualistic relationship with hydrogen-consuming methanogens (syntropy)
 - Methanogens consume H₂, reducing H₂ partial pressure to for acetogens
- Homoacetogens can also assist in H2 reduction

Methanogenesis

- Final metabolic phase in AD
- Methanogens produce methane gas from acetate or H₂ and CO₂
- 2/3 of methane produced is derived from acetate
- Often the rate limiting step in anaerobic digestion of acids

Methanogens

- All are in Archae domain
- Obligate anaerobes, but can form in biofilms and granules for aerobic protection
- Optimum performance at neutral pH (7)
- Two main groups: hydrogenotrophic and acetoclastic

Methanogenesis

- Hydrogenotrophic methanogens
 - Produces methane from H₂ and CO₂
 - Less dominant in AD
 - Mediates syntropy with acetogens

Methanococcus

Methanospirillum

Methanogens

- Two known genera convert acetate to methane (Acetoclastic)
 - Methanosarcina Favors high concentration
 - Methanosaeta Favors low concentration
- Also produces CO₂ as metabolic by-product

Methanosarcina sp.

Methanosaeta sp.

Questions?

